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This work is an elaboration of [i]. It is shown within the model of a St. Venant body 
that the lower limit of the maximum load can be found from a control problem that can be re- 
duced to a variational problem. A method is proposed for obtaining simultaneously both the 
lower and upper limits. The condition under which this approach will give coinciding limits 
is found. The method is illustrated by examples of the calculation of composite shells. 

Formulation of the Problem. We consider a structure made of a material whose behavior 
can be described by the model of an ideally plastic body. Let the yield condition have the 
form 

]~(~) Uh(~)  U .-. U l~(~)  = ~ (1 )  

where o is a vector consisting of the components of the stress tensor. 

The loading is assumed to be uniparametric, i.e., the volume forces Q and the surface 
forces q are proportional to a single parameter t: 

Q = Qot, q = qot ( t > O). 

The equations of equilibrium can be written in the symbolic form 

L ~ = - Q o t  (x ~ @, l a = qot (x ~ r ) ,  ( 2 )  

where L and ~ are linear operators, ~ is the region occupied by the body, F is the surface 
of the body on which the loads are given, and x is the radius vector of a point. 

The kinematic boundary conditions are assumed to be homogeneous and have the form 

K u  = O (z  c y). (3) 

Here  K i s  a l i n e a r  o p e r a t o r ,  u i s  t h e  v e c t o r  o f  d i s p l a c e m e n t s ,  and ~ i s  t h e  s u r f a c e  o f  t h e  
body on which  t h e  l i m i t s  on t h e  d i s p l a c e m e n t s  a r e  g i v e n .  I n  wha t  f o l l o w s ,  t h e  f i e l d s  o f  t h e  
d i s p l a c e m e n t s  a r e  assumed  t o  be k i n e m a t i c a l l y  p o s s i b l e ,  i . e . ,  t h e y  a r e  c o n s i d e r e d  i n  s p a c e s  
s a t i s f y i n g  t h e  c o n d i t i o n  ( 3 ) .  

W i t h i n  t h e  model  o f  a S t .  Venan t  body t h e r e  a r i s e s  t h e  p r o b l e m  o f  f i n d i n g  t_  and t +  - 
t h e  l o w e r  and u p p e r  l i m i t s ,  r e s p e c t i v e l y ,  o f  t h e  c o e f f i c i e n t  o f  t h e  l i m i t i n g  l o a d  t , ,  r e -  
s u l t i n g  i n  p l a s t i c  f a i l u r e  o f  t h e  s t r u c t u r e .  A c c o r d i n g  t o  t h e  s t a t i c  t h e o r e m  [ 2 - 4 ] ,  i f  f o r  
some Q and q t h e  v e c t o r  o s a t i s f i e s  Eqs.  ( 2 )  b u t  d o e s  n o t  e x c e e d  t h e  l i m i t s  o f  t h e  y i e l d  
s u r f a c e ,  t h e n  t = t _ .  I f ,  h o w e v e r ,  t h e  v e l o c i t y  f i e l d  u ,  s a t i s f y i n g  t h e  c o n d i t i o n  K6 = 0 
on t h e  s u r f a c e  7 h a s  been  f o u n d ,  t h e n  t +  can  be found  [ 2 - 4 ] .  

S o l u t i o n  o f  t h e  P r o b l e m .  We c o n s i d e r  f i r s t  t h e  s i t u a t i o n  when t h e  l e f t - h a n d  s i d e  i n  
t h e  y i e l d  c o n d i t i o n  i s  a homogeneous  f u n c t i o n :  

f(~c) = c~/(~), (4 )  

where f is convex. The case when the function f is quadratic was investigated in [i]. Here 
we study cases when f can be a nonquadratic function and when n > 2. 

Writing o = to o there follows from (2) 

L %  ---- - Q o  (x ~ @, l c% = qo (x ~ I"). (5) 
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For t = t_ the condition that the limits of the yield surface are not exceeded assumes the 
form 

tlfrnax ((So) = t .  ( 6 )  
x 

Hence one can see that in order to obtain the best lower estimate of t, it is necessary to 
find a field o 0 that minimizes fmax(o0). The problem of finding o0 is replaced by the prob- 

X 

lem of finding the displacement field u and the field of elastic characteristics E, which 
are related to o by a fictitious Hooke law: 

% = Eeo, co(x) = Buo(X), E = X(x) Eo(x). ( 7 )  

Here e 0 is a vector consisting of the components of the strain tensor; B is a linear differ- 
ential operator; X(x) is a desired scalar; and E0 is a symmetric matrix which will be found 
below from the condition t_ = t+. 

The computational operator fmax(c0) is represented in the form 
X 

/max(O'o) = lira (mesco)-i [v(%)do , (8) 

and the problem of minimizing (8) is replaced�9 by a variational problem of minimizing the 
function F under the restriction (5) 

F ,  = rain F, F = ; [1 (EEoBuo)lV do. (9) 
~,U 0 

It can be shown that this problem is equivalent to an isoparametric problem of minimizing F 
under the condition 

n = S EoS ,od,O-- S Q;uoeo)- .[ % 0dr = b, 
(o o ]P 

(io) 

where the index T designates transposition; b = const. Writing the condition for the La- 
grangian ~ = F + ~H to be stationary in the form 6%~ = 0, where 6 indicates the variation 
operation, we obtain for X 

Lnv-i = (~/nP) (Buo)~EoBuo/fp(E~176 ( l l )  

Writing f0 = f(o0) we obtain from the condition 6u0~ = 0, talcing into account Eq. (ii), 

,I 1~ ( Buo) ~ EoBuo (8Io/0%) Eo6Buo/n/o] do - -  

(o 

- 2 y ~,(BuoF Eo6Buodo~ + .[ Q;SuoClO) § ,f qo~uodr = O. 
o) o) r 

(12) 

The coefficients in front of ~Bu0 in the first two integrals sum to -o0T: 

(Buo)~ EoBuo(OfdO%) Eo/n/o - -  2~ (Buo) TEo = -- 6~. ( ]3 ) 

The validity of Eq. (13) can be verified by multiplying Eq. (13) on the right by Bu0, taking 
into account Eq. (7), and Euler's formula for homogeneous functions 

(~/o ~)~ % = n / ( ~ ) ,  

Thus, Eq. (12) is a Lagrange variational equation equivalent to Eq. (5) and the problem 
Eqs. (9) and (5) is equivalent to Eqs. (9) and (i0). The constant b [D is expressed in 
terms of b through Eq. (i0)] is arbitrary. Indeed, if Eq. (5) is represented by a single 
operator equation 
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D~EoBuo = Po 

and its solution is written in the form 

Uo = (D~EoB)-IPo,  (14)  

t h e n  s u b s t i t u t i n g  Eq. (14)  i n t o  Eqs .  (5 )  and (7 )  shows t h a t  G0 does  n o t  depend on t h e  a m p l i -  
t u d e  Z. 

I n  t h e  l i m i t  p ~ ~ we r e p r e s e n t  t h e  s c a l a r  X(x)  in  t h e  fo rm 

X = c/[/(EoBuo) ]~/n. ( 15 ) 

E s t i m a t e  f rom Above.  Assume t h a t  t h e  s o l u t i o n  o f  t h e  p r o b l e m  (9)  and (10)  h a s  been  
f o u n d .  I n  o r d e r  t o  make an e s t i m a t e  f rom a b o v e ,  we t a k e  as  t h e  v e l o c i t y  f i e l d  v = u and t h e  
strain-rate field $ = 

V = Uol% ~ = BUo& , 

where �9 is a time constant. 

Knowing ~, we can, generally speaking, find the stress field o+ from the yield law: 

~ = ~ [ ~ ( ~ + ) I o ~ l ' ,  ( 1 6 )  

where  v i s  d e t e r m i n e d  f rom t h e  y i e l d  c o n d i t i o n  f ( o + )  = 1. The f o l l o w i n g  a p p r o a c h  can be 
u s e d  t o  c a l c u l a t e  o+. M u l t i p l y i n g  gq.  (16)  on t h e  r i g h t  by o+ and u s i n g  g u l e r ' s  f o r m u l a  
g i v e s  

~ +  = vn/(e+) = vn.  

According to the same formula of Euler 

(~ - t ) ~ ( ~ ) 1 o ~  = (o [oI1o~ l~lo~)~, ( 17 ) 

if f is twice continuously differentiable. Then Eq. (16) assumes the form 

= v [ A  (~+)l(n - -  t) 1~+, A (o) = 0 [0/10~ W O e .  ( 18 ) 

In order to calculate the limits of the limiting load we propose using an iteration process. 
Thus, let the vector o0t_ be the argument in Eq. (18). Using the notation A0 = A(o0t-) and 
assuming A0 is nonsingular, it follows from Eq. (18) thai: 

~+ ~ A~I[ (n - -  t)/v. ( 19 ) 

The divisor v is determined from the yield condition f(o+) = i: 

v = (n - -  t ) [ / ( A / I ~ ) ]  1~. 

Then 

~+ "~ A ~ I ~ / [ / ( A / I ~ ) ]  al". ( 20 ) 

We can  a t t e m p t  t o  s o l v e  Eq. (18)  by an i t e r a t i v e  method  a s  f o l l o w s .  Us ing  as  t h e  a r g u m e n t  

o f  t h e  m a t r i x  A t h e  v e c t o r  a + ( r - l ) ,  where  r i s  t h e  number  o f  t h e  i t e r a t i o n ,  and o + ( ~  = 
t _ o 0 ,  we o b t a i n  f r o m  Eq. (28)  

o; = 1'", Acr-1  = A 

p r o v i d e d  t h a t  A ( r _ l )  a r e  n o n s i n g u l a r  m a t r i x e s .  

I f  o+ h a s  been  found  ( e x a c t l y  o r  a p p r o x i m a t e l y ) ,  t h e n  t h e  u p p e r  l i m i t  o f  t h e  l i m i t i n g  
l o a d  can  be c a l c u l a t e d .  A c c o r d i n g  t o  t h e  k i n e m a t i c  t h e o r e m ,  we h a v e  

(21.) 
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An iteration process for solving Eqs. (12) and (15) and calculating the limits t- and 
t+ can be constructed as follows. At the first step it assumed that 1 (I) = i. The field 

u0(I) is sought by solving the problem (3), (5), and (7) of the theory of elasticity. The 
lower limit t_ is found from the relation (6) and the value of t+ is found with the help of 
Eq. (21). It should be noted that in the case when the formula (20) is employed, this is 
not strictly the upper limit, since the relation (20) is approximate. At the second step 

1 (2) is calculated using the formula (15) and the problem (3), (5), and (7) of the theory 

of elasticity is solved once again but with I = 1 (2), t_ (2), t+ (2) are sought once again, 
etc. As shown below for examples for a composite shell and in [i] for plates, the iteration 
process converges quite rapidly. 

Condition for t_ = t+. Assume that the solution of the problem (3), (5), and (7) of 

the theory of elasticity has been found, and assume that u 0 and I are represented in the 
form 

uo = = r  ~ = cons t ,  ~ = c~ [[(EoB~)I tl~. 

According to Eq. (4), we have 

f (~o t - )  = % n t ~  (EoB~) = t~c~n"  ( 2 2 )  

Since fmax = 1 necessarily, we have 
X 

= Ic~l -~. (23) 

In view of the fact that o 0 satisfies the equations of equilibrium (5), the energy identity 
must also be satisfied: 

q~u o dr .  " = J Oouo do~ ff- %e o &o 
ca r r 

Substituting here o 0 and s0, according to Eq. (7), and using Eq. (23) gives 

(2a) 

On the other hand, substituting into the formula for the estimate from above (20) and (21) 
the values v = ~,~/~, $ = ~B~/T, we obtain 

(25) 

where t+ is calculated with the help of the approximate formula (20). 

Comparing Eqs. (24) and (25) shows that {+ and t- are identical if E 0 is found from 
the equations 

E o = A ~ / ~ s ,  A o = 0 [Oi(t-~EoB~)IO~FIO~ ( 2 6 )  

where o s is a constant with the dimension of stress. 

It remains to show that t+ = {+ when Eqs. (].2) and (15) are satisfied exactly. For 
this it is sufficient to verify that o_, found from Eqs. (12) and (15), satisfies the yield 
law (16). Indeed, as follows from Eqs. (22) and (23), the yield condition is satisfied, 
i.e., f(o-) = i. 

The yield law (16), substituting Eq. (17), assumes the form 

= ~(a_)lO ~ = [v l (~  - -  i )  l {0 [ ~ ( ~ _ ) l o  o l , l O  a } ~ _  = [ v l ( n  - -  1) lAo ~_. 

Substituting here o_ = ~t-IEoB~ = ~t-XA0-1B~/~s gives 

= ( v ~ r  - t ) ~ l ) ~  = p $ ,  ( 2 7 )  



where ~ = ['] is a scalar. Thus, as one can see from Eq. (27), the vectors ~ and $ are col i 
linear, i.e., ~ is orthogonal to the flow surface at the point ~_, and hence o- and g satis- 
fy the yield law (16). Therefore o_ = o+ and t+ = t+ = t_ = t,. 

General Yield Condition. Assume that the yield condition has the form (i) and can be 
approximated by some inscribed piecewise-smooth surface, each piece of which is convex and 
is described by the equation 

b~(~) = t ,  i = 1 . . . . .  p,  ( 2 8 )  

p is the number of pieces and b i is a homogeneous function of degree 2n (for example, a 
quadratic function). Then the yield condition 

b~(a) U b2(a) U ... U b p ( a ) =  i ( 2 9 )  

c a n  be r e p l a c e d  by t h e  s i n g l e  c o n d i t i o n  

g= (~ [b~(@p) 1/h , ~ = ~  k-+ oo. (3o) 

Indeed, if at least one of the conditions (29) is satisfied, then g = i. Conversely, if 
g = i, then at least one of the conditions (28) must be satisfied. 

The function g, in contrast to the condition (29), describes a smooth surface. The 
validity of this substitution can be justified as follows. According to the static theo- 
rem, when making an estimate from below, it is only necessary that the conditions bi(o_) 
i, i = i, ..., p not break down in a statistically possible stress field o_. Since in the 
limit k § ~ the value g + max{b i .... , bp}, then for g(o_) ! 1 and k + ~ no value of bi 

exceeds unity, i.e., the condition bi(o_) < 1 remains valid. 

The function g(o) is homogeneous. For this reason, the results obtained above are 
valid for it. Then 

% = c/[g (EoBuo)] 1[2~ = bl*/2n, 

b, ---- max {b I (EoBuo) . . . . .  bp (EoBuo) }. 

Here the fact that the other terms raised to the power k in the series in Eq. (30) makes an 
infinitesimal contribution. 

From the geometric standpoint o+ is determined by seeking a vector representing a point 
on the surface (29), the normal to which at this point is collinear to the strain-rate 
vector ~. If, however, g lies within the angle made by the normals to the surfaces b r = 1 
and b s = i adjoining the edge, then a+ is set equal to the value of the vector ~ represent- 
ing a point on the edge (Fig. i). The same procedure is used in the case of conical points 
[3, 4]. When the surface (29) is replaced by a smooth surface (30) the value of Og will be 

virtually identical to o b in the limit k ~ ~, as a result of which the error arising when 
the piecewise-smooth surface is replaced by a smooth surface will decrease as k increases. 

In the case $ = 0, i.e., when the stresses do not reach the flow surface, the vector o+ 
can be arbitrary, but, as one can see from Eq. (21), this does not affect the value of t+. 

Numerical Examples. As an illustration of the approach proposed above, Fig. 2 displays 
some computational results obtained by the finite-element method for thin composite shells 
of revolution, which are formed by symmetric winding of a ribbon at an angle • to the 
meridian along the geodesic lines of the median plane. The annular load P = Pot is directed 
along the axis of revolution and is applied to the edge with the smaller radius r 0. The re- 
sults are presented for a conical shell with radius R 0 of the large freely supported edge 
with thickness h 0 = 0.05r0 and with a winding angle $0 at the supported edge. At other 
points of the meridian the thickness h and the angle ~ are related to the distance r to the 
axis of revolution by the relation [6] 

r sin ~p = Bo sin ~o, hr cos ~ = hobo cos ~o. 
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The following yield conditions were taken for the ribbon: 

.j_ 0.92 (j22 r~ 0.12 12 n 

The results are presented for n = 2 and 4. It was assumed that P0 = oaR0, Osll/Os 22 = 2~ 

Os22/0.~ 12 = JS-, t, ~ t** = (t+ + t_)/2, and the height of the shell is r0. The small in- 
crease in t, for large values of ~0 is caused, first, by the fact that the thickness of the 
shell increases near the edge with the smaller radius r 0 as ~0 increases and, second, by 
the fact that 0.s 12 < Os 22. 

Figure 2 also displays plots of the convergence of the iteration process presented 
above. It is obvious that the value of t** stabilizes very rapidly. The computational re- 
sults also showed that the values of t_ and t+ depend strongly on the degree of discretiza- 
tion of the region (the number of elements and points of integration over the thickness of 
the shell). For a high degree of discretization the numerical value of t_ can even be 
greater than t+. This happens for two reasons. First, when approximate methods are employed 
for solving problems in the theory of elasticity the equations of equilibrium are, as a rule, 
not satisfied exactly. Second, when fmax(o0) is calcu]ated, the peaks of the function f are 

X 

"cut off" (smoothed) when numerical methods are employed. 

In order for the computation to be stable and in order to achieve the best convergence, 
the ratio of the maximum value of k to the minimum value must be limited. A similar condi- 
tion must also be adhered to when calculating E 0 from Eq. (26). The results presented below 

were obtained for Xmax/Xmi n = i00 and (with n = 4) [0.iJImax/I0.iJlmin = i00 with E 0 calculated 
from Eq. (26). But, even with quite large deviations from the condition (26), the quantities 
t+ and t- are found to be quite close, and t** = (t+ + t_)/2 stabilizes (with an error of 
about 1%) after 3-4 iterations. 

Thus, the method proposed above makes it possible to obtain a bilateral estimate of the 
limiting load by solving a problem in the theory of elasticity whose elastic characteristics 
are determined in terms of the plasticity parameters. 
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